Good elliptic operators on Cantor sets
نویسندگان
چکیده
It is well known that a purely unrectifiable set cannot support harmonic measure which absolutely continuous with respect to the Hausdorff of this set. We show nonetheless there exist elliptic operators on (purely unrectifiable) Cantor sets in R2 whose continuous, and fact, essentially proportional measure.
منابع مشابه
The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators
In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...
متن کاملGood Measures on Cantor Space
While there is, up to homeomorphism, only one Cantor space, i.e. one zero-dimensional, perfect, compact, nonempty metric space, there are many measures on Cantor space which are not topologically equivalent. The clopen values set for a full, nonatomic measure μ is the countable dense subset {μ(U) : U is clopen} of the unit interval. It is a topological invariant for the measure. For the class o...
متن کاملCantor sets
This paper deals with questions of how many compact subsets of certain kinds it takes to cover the space ω of irrationals, or certain of its subspaces. In particular, given f ∈ (ω\{0}), we consider compact sets of the form Q i∈ω Bi, where |Bi| = f(i) for all, or for infinitely many, i. We also consider “n-splitting” compact sets, i.e., compact sets K such that for any f ∈ K and i ∈ ω, |{g(i) : ...
متن کاملthe approximate solutions of fredholm integral equations on cantor sets within local fractional operators
in this paper, we apply the local fractional adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of fredholm integral equations of the second kind within local fractional derivative operators. the iteration procedure is based on local fractional derivative. the obtained results reveal that the proposed methods are very efficient and simple tools ...
متن کاملTwo measures on Cantor sets
We give an example of Cantor-type set for which its equilibrium measure and the corresponding Hausdorff measure are mutually absolutely continuous. Also we show that these two measures are regular in the Stahl–Totik sense. c ⃝ 2014 Elsevier Inc. All rights reserved. MSC: 30C85; 31A15; 28A78; 28A80
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2021
ISSN: ['1857-8365', '1857-8438']
DOI: https://doi.org/10.1016/j.aim.2021.107687